Scythe Mugen 4 CPU Air Cooler Review

Scythe furthers its Mugen line of computer processor heatsink air coolers by redesigning the fan with the new "Glide Stream" unit. It also pays attention to the heatsink design itself but has totally rethought its mounting system and how it works making the Mugen 4 heatsink much easier to install than its predecessors? Bang for the buck too!


Scythe has been in the business of making CPU coolers long enough to know that there is never a one size fits all solution to heat sink design. Where the Grand Kama Cross 2 worked well as a mainstream level product, Scythe understands there are users who will require much more cooling for their CPUs.

To answer that demand Scythe is introducing the fourth generation Mugen cooler dubbed the "Mugen 4." The Mugen 4 uses a more traditional tower design to handle cooling duties and it incorporates a much less traditional array of twelve heat pipes to do the heavy lifting. Scythe has never shied away from trying new designs and the Mugen 4 continues this tradition. Of course the field is changing and water coolers are starting to encroach on what was air cooler-only territory price-wise. Let’s see if the Mugen 4 has what it takes to not only cool our enthusiast class CPU but also compete against all-in-one water coolers and do so at a price that is competitive.

Article Image

System Setup

Today's review introduces our fourth generation [H]ard platform. The test bed consists of the ASUS Z87-Deluxe motherboard, eight gigabytes of Corsair 1600 MHz DDR3 RAM and the Intel Core i7 4770K.

Article Image

Test Methods


The biggest change you will notice is the removal of hardware testing. In recent years, Intel has shifted their methods of testing to software based and so we find it acceptable to do the same.


Once again we have an integrated GPU in our processor which alleviates the need for a discrete one. With the removal of a discrete GPU comes the advantage of not having an additional variable to account for.

The iGPU will not create any anomalies in our testing as long as we practice consistent testing methods.


Corsair was kind enough to provide us with their Carbide series chassis. It provides excellent airflow and interior space and is a good reflection on current case design.

Thermal Paste

Noctua's NT-H1 thermal paste was selected as the paste of choice for a few key reasons. The thermal paste has been shown to provide excellent thermal conductivity allowing the heat sinks to better do their job. There is no observed curing time. That is, performance does not get any better over time. Any curing time could have introduced variables into the equation causing at best dubious results and at worst unreliable ones.


Ambient temperature will be kept at 25C for the duration of the tests and measured with a MicroTemp EXP non-contact infrared thermometer and cross referenced with the Sperry Digital 4 Point thermometer. Any variance greater then 0.2C will halt the testing until temperatures return within spec for fifteen minutes.


Idle temperatures will be recorded after a twenty minute period of inactivity. Any fluctuation during the last sixty seconds will reset the timer for an additional five minutes.


Load temperatures will be recorded after a twenty minute period of 100% load. To obtain this load we will be using AIDA64 Extreme Edition v3.00.2500. This places an even greater load on the CPU than before and includes some benefits. Because the load is so extreme we see the temperature vary wildly from 72C to 86C in some instances. To get an accurate reading we will utilize AIDA64’s ability to average the temperature over time. Given twenty minutes at 100% load we arrive at a temperature that accurately represents our heatsink’s performance.


Sound levels will be measured with a Reliability Direct AR824 sound meter from a distance of four feet away. With everything turned off and the room completely silent the meter registered a sound level of 38dB(A). This is a very quiet room where a simple pin drop could be heard. All sound measurements are recorded in the very late evening to further reduce any ambient noise.